推广 热搜: 支付宝H5  机构  重点  条例  1100  基金会  阿里巴巴  礼包  脱硫器  底线 

Man Group:使用EFFS有效估计关联订单的交易成本有时候会感到莫名的难过是什么歌

   日期:2023-07-14     浏览:43    评论:0    
核心提示:量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获20

量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。

Campbell R. Harvey、Anthony Ledford、Emidio Sciulli

Philipp Ustinov、Stefan Zohren

引言

提高交易策略Alpha的最简单方法是降低交易成本。随着系统化交易和机器学习在量化投资的兴起,投资者正转向更快、更高周转率的交易策略。对于这些策略,准确的衡量交易成本是至关重要的,如果成本不能适当的估计,可能会使一些交易无利可图。

衡量成本的常用方法通常一次只关注单个订单。然而,在许多情况下,这些订单是相关的,第一个订单的执行将影响未来订单的执行。在本文中,我们主要基于母订单(也称为元订单)研究订单相关的情况。我们回顾了一种被称为expected future flow shortfall的方法,简称EFFS,它是我们在一篇研究论文中提出的(见底部的参考文献)。

元订单、子订单及交易滑点

当订单量过大,比如超过当前交易所能提供的流动性时,一个订单往往需要被拆分为多个子订单,逐个成交。这时原先的总订单,我们称为元订单。

投资决策往往基于最近的成交价或收盘价,这个价格我们称为Decision Price。当投资决策到达执行代理端,此时的价格称为Arrival Price。由于通信的迅速和有效,一般假设Decision Price与Arrival Price一致。而当子订单被执行时,市场的价格已经发生了变动,此时订单的执行价一般与Desicion Price不一致,它们之间的差异,称为滑点。一般用滑点的大小衡量由于价格冲击带来的交易成本。

单看一个元订单,很难察觉我们交易的影响,因为市场波动通常要大两个数量级。我们在图1的Panel A中说明了这一点,它显示了从决策价格为100开始的买入元订单的“连续”执行过程中,1000个模拟价格移动的演变。乍一看,似乎大约一半的价格上涨,一半下跌,这是由于总体市场走势与我们的交易无关。然而,如果仔细观察买入订单,价格轨迹会在略高于50%的情况下上涨,而在其余情况下下跌。

展开全文

平均而言,在许多元订单中,执行价格路径略高于决策价格。这在图A中并不明显,因为平均影响曲线看起来很平,但这只是由于绘图比例,因为影响比典型的价格波动小得多。在图1的Panel B中,我们关注更窄的价格范围,看看这些影响是如何推动价格上涨的。比较两幅图,可以明显看出A图中价格变动的标准差(约100个基点)远远大于影响(约10个基点)。

Market Impact based on 1,000 Monte Carlo Simulations

注:图A显示了在执行买入元订单期间,1000个模拟的中间价格移动(黑色)。这些中间价格路径的平均值给出了经验平均价格影响曲线,用绿色表示,理论曲线用红色表示。这些经验和理论的影响曲线只有在Panel B中更清晰,它关注的是一个更窄的价格范围。请注意,价格影响大约比典型的中间点价格波动小一到两个数量级,这在比较面板A和B时变得很明显。

持续的市场影响及其对后续元订单的影响

市场影响的大致事实如下:平均而言,中间价在买入元订单期间呈上升趋势,并可能在元订单交易结束后开始回落。它可能完全恢复,也可能不完全恢复。永远不会恢复(或恢复极其缓慢)的影响称为永久影响。图2展示了一个孤立的购买元订单对价格的影响。元订单的价格轨迹可以是线性的,也可以是非线性的(通常是凹的)。

Stylised Representation of Average Permanent Versus Temporary Price Impact

直接衡量永久的市场影响实际上是不可能的,因为后续的元指令可能会在初始元指令恢复完成之前开始交易。对于大型资产管理公司来说,在一个元订单中提交所需的全部金额通常是不切实际的。事实上,这个数额甚至可能无法在一天内交易。这导致了一种自相关效应:买入元订单通常会被买入元订单跟随,而卖出元订单则相反。图3展示了一个交易两个连续买入元订单的示意图。

Execution of Two metaorders With ‘Relaxation’ Time In Between

上图显示了第二个元订单的决策价格大约为100.025,这是由于第一个元订单(包括临时和永久的)的影响而使得决策价格高于100。

首先,在t4时间(100.025到100)的价格差异没有反映在任何一个元订单的滑点中。我们有时将100的价格称为清洁价格,将100.025的价格称为受我们交易影响的脏价。第二,如果交易策略的盈利能力取决于两个元订单的执行,那么必须考虑第一个元订单对用于基准第二个元订单的价格的影响。这些考虑还可能影响每个元订单的规模,以获得最佳的总体执行。

研究通常假设,这两个元指令可以以100加交易滑点的价格执行,这将扭曲交易的可行性。这种对随后交易的价格、成本和盈利能力的影响有时被称为隐性滑点,因为它没有在传统的滑点度量中反映出来。我们提出的EFFS模型能够测量这种隐藏的滑点。

EFFS模型

在建立EFFS模型时,有几点需要注意。首先,我们假设元订单被分解为同一侧的子订单,即,如果元订单是购买订单,所有的子订单也将是购买订单。其次,我们关注的不是当前交易的成本,而是价格走势对任何未来元订单的影响(这是使用预期的未来流量或元订单EFF来估计的)。价格变动对EFF的影响就是我们所说的EFFS。换句话说,给定交易期间的EFF等于从给定交易期间到下一个交易期间的即时价格变动,乘以该交易期间之后的EFF。EFF需要从数据中估算。从直观上看,对于相关的订单流,买入订单更有可能被买入订单跟随,因此对EFF的净影响是正的。此外,我们预计这种影响将更明显的购买订单。定量地说,这种效应的强度可以从数据中估计出来。这在本文末尾引用的研究论文中有更详细的解释。

另一种处理相关订单流对市场影响的方法是所谓的传播器模型。该模型简化假设每个元序可以单独处理,每个元序的影响可以线性求和。使用这种方法,每一笔已实现的交易的市场影响可以从观察到的价格中减去,从而获得清洁价格,即在没有交易影响的情况下可以观察到的价格。这些假设的价格可以用来计算该策略的净损益。清洁损益表与已实现损益表之间的差异提供了一种衡量标准滑移对损益表的额外影响的方法,在本质上与EFFS捕获的影响数据相似。

为了说明我们的EFFS方法的优势以及与传播模型方法相比的相对性能,我们将这两种方法应用于自营交易策略的元订单。我们在下图中报告了2018年1月至2019年1月之间每个月的估算值。为了关注相对性能,我们将度量标准化,以便传播器估计每月等于100%。值为80%意味着EFFS能够达到传播器模型80%的效果。

EFFS Versus Propagator Monthly Estimates

从上图中可以得到两个重要的结论:

1、在整个样本周期内,简单的EFFS模型的性能与难以估计的传播模型相似。在此期间,两种模型的平均差异约为12%,如果不包括动荡的2018年2月,则仅为6%;

2、EFFS估计更具有适应性,因为它只使用了一个月的数据。相比之下,传播模型使用大约一年的数据,因此自然更平滑,对价格变动和交易分布的变化也不那么敏感。

总结

在这个机器学习和大数据的时代,交易发生得更加频繁。因此,尽可能高效地执行交易变得越来越重要。通常的方法都存在一种短视:只衡量当前交易的影响。但是,在很多情况下,订单是相互关联的,第一个订单的影响会影响到未来订单的执行。在这里,我们回顾了一种我们称为EFFS的新技术来解决这个问题。

我们的方法直观且易于实现——我们在许多不同的市场场景中提供模拟证据,说明EFFS方法比其他方法有明显的优势。我们还提供了一个使用专有数据的真实交易示例。我们的实证分析表明,EFFS在使用更复杂和需要数据的方法(如传播模型)时表现得更有竞争力,并且对不断变化的市场条件反应更强。

总之,理论性质和实证结果表明,将EFFS公式作为一种简单的方法来估计超出标准滑移估计的交易对损益表的影响是有好处的。这对于快速策略和具有自相关订单流的策略尤其重要。

关于EFFS模型的具体说明,参考以下论文:

Quantifying Long-Term Market Impact:

原文链接:http://www.jingke.org/news/show-116445.html,转载和复制请保留此链接。
以上就是关于Man Group:使用EFFS有效估计关联订单的交易成本有时候会感到莫名的难过是什么歌全部的内容,关注我们,带您了解更多相关内容。
 
打赏
0相关评论

推荐图文
点击排行
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报