碳化钒原位合成是一种近年来发展起来的制备复合材料的新方法。通过固相间原子的扩散来完成反应的自蔓延高温合成法(SHS)、放热弥散法(XDTM)、接触反应法、混合盐反应法和机械合金化法(MA)都属于原位合成。其中,机械合金化又称高能球磨,是制备超细材料的一种重要途径,是1970年由Benjamin 首先提出的。这种技术是将元素粉末按照一定的配比机械混合,在高能球磨机等设备中长时间运转,由于球磨时金属磨球与粉末颗粒之间、粉末颗粒与颗粒之间经过长时间的碰撞挤压,导致粉末出现塑性变形、加工硬化、破碎等现象,继续球磨,新生表面将会发生冷焊和破碎变形。
上世纪70 年代以来,TiN 薄膜作为刀具涂层在应用上取得了巨大的成功,这一切削刀具的“金色革命”有力动了制造业的发展。继TiN 以后,CrN 、ZrN、TiAlN等性能更为优异并各具特色的氮化物薄膜又相继推出,为满足不同加工方式和加工条件下刀具对涂层的特殊要求提供了选择的空间。与氮化物相比,碳化物硬度更高,而且同样具有多种优异的综合力学性能。但是,过渡金属碳化的相组成一般较为复杂,制备也相对困难,阻碍了这类有很大潜力的涂层材料的发展。因而在碳化物中,只有TiC和TiCN薄膜得到较多的研究,并已应用于刀具涂层。 碳化钒是硬度的过渡金属碳化物之一。
实验的碳化钒薄膜样品均采用ANELVA SPC2350 多功能磁控溅射仪制备。金属V 靶(纯度为99.9 %) 由射频阴极控制;不锈钢基片经1μm 金刚石研磨膏抛光后,用和无水酒精超声清洗并脱水后装入真空室的基片架,基片到靶的距离为5cm。本底真空优于2 ×10-3Pa,高纯Ar(纯度为99.999%)和C2H2 (纯度为99.9 %) 的混合气体充入真空室中,混合气体总压固定为0.32Pa ,其中C2H2的分压在5 ×10-3Pa~2.5 ×10-2Pa 变化,通过C2H2分压的改变获得一系列不同碳含量的碳化钒薄膜。为提高薄膜与基底之间的结合力,制备碳化钒薄膜前,在基片上先沉积一层厚度为30nm~200nm 不等的金属钒过渡层。沉积过程中,V 靶的溅射功率固定为200W,基片不加热,亦不施加负偏压,各样品的沉积时间均为45min。
以上就是关于纳米碳化钒免费咨询「人本合金」明年今日歌词全部的内容,关注我们,带您了解更多相关内容。